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A general model of a pure exchange differential information economy is studied. In
this economic model, the space of states of nature is a complete probability measure
space, the space of agents is a finite measure space, and the commodity space is
the Euclidean space. Under some appropriate and standard assumptions on agents’
characteristics, results on continuity and measurability of the aggregate preferred
correspondence similar to that of Aumann [8] are established. These results together
with other techniques are then employed to prove the existence of a maximin rational
expectations equilibrium (maximin REE) of the economic model.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

When traders come to a market with different information about the items to be traded, the resulting
market prices may reveal to some traders information originally available only to others. The possibility
for such inferences rests upon traders having expectations of how equilibrium prices are related to initial
information. This endogenous relationship was considered by Radner in his seminal paper [26], where he in-
troduced the concept of a rational expectations equilibrium by imposing on agents the Bayesian (subjective
expected utility) decision doctrine. Under the Bayesian decision making, agents maximize their subjective
expected utilities conditioned on their own private information and also on the information that the equi-
librium prices generate. The resulting equilibrium allocations are measurable with respect to the private
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information of each individual and also with respect to the information the equilibrium prices generate and
clear the market for every state of nature. In papers [1,2,26], conditions on the existence of a Bayesian ratio-
nal expectations equilibrium (REE) were studied and some generic existence results were proved. However,
Kreps [22] provided an example that shows that a Bayesian REE may not exist universally. In addition, a
Bayesian REE may fail to be fully Pareto optimal and incentive compatible and may not be implementable
as a perfect Bayesian equilibrium of an extensive form game, refer to [15] for more details.

It was pointed out in [21] that the market hypothesis fails if the space of states of nature is of a dimension
higher than that of the price simplex. Thus, in generic existence theorems of Allen [1,2] and Radner [26],
the assumption on the space of states of nature being finite or of sufficiently low dimension relative to the
dimension of price simplex is essential. However, it was shown in [20] that if the space of states of nature is
of a dimension strictly higher than that of the price simplex, then for a residual set of economies there is a
rational expectations equilibrium which is given by a two-to-one and almost discontinuous price function.
When the dimensions of both spaces coincide, as mentioned in [3], the existence of an equilibrium fails in
finite economies. If the space of agents is a unit interval consisting of imperfectly and perfectly informed
agents, under the hypothesis of suitably disperse forecasts, it was shown in [3] that for each state of nature
the aggregate excess demand is continuous on the price simplex and satisfies Walras’ law. This fact allowed
Allen to apply a fixed point theorem to obtain the market clearing price vector for each state of nature
and obtain the existence of an ε-rational expectations equilibrium for all ε > 0. The convergence as ε → 0
holds for some cases in which open counterexamples to the existence of rational expectations equilibria
are known. In the same year, Allen [4] also considered two types of agents (informed and uninformed) and
prices carried only incomplete information, when prices conveyed some information from informed agents
to uninformed agents. By applying a fixed point theorem, she obtained a new approximate non-revealing
rational expectations equilibrium in the sense that the total discrepancy between demand and supply is
small. Allen [5] further showed the existence of a rational expectations equilibrium with (strong) ε-market
clearing in the sense that the discrepancy between demand and supply is zero for all but one commodity
for which the value can be made arbitrarily small.

In a recent paper [13], de Castro et al. introduced a new notion of REE by a careful examination of
Kreps’ example of the nonexistence of a Bayesian REE. In this formulation, the Bayesian decision making
adopted in the papers of [1] and [26] was abandoned and replaced by the maximin expected utility (MEU)
(see [14]).2 In this new setup, agents maximize their MEU conditioned on their own private information and
also on the information the equilibrium prices have generated. Contrary to a Bayesian REE, the resulting
maximin REE may not be measurable with respect to the private information of each individual or the
information that the equilibrium prices generate.

Although Bayesian REE and maximin REE coincide in some special cases (e.g., fully revealing Bayesian
REE and maximin REE), these two concepts are in general not equivalent. Nonetheless, the introduction
of the MEU into the general equilibrium modeling enables de Castro et al. to prove that a maximin REE
exists universally under the standard continuity and concavity assumptions on the utility functions of
agents. Furthermore, they showed that a maximin REE is incentive compatible and efficient. Note that in
the economic model considered in [13], it is assumed that there are finitely many states of nature and finitely
many agents, and the commodity space is finite-dimensional. Thus, one of open questions is whether their
existence theorem can be extended to more general cases. The main motivation of this paper is to tackle this
question. We study a general economic model of a pure exchange differential information economy whose
space of states of nature is a complete probability measure space, and whose space of agents is a finite
measure space. Under appropriate and standard assumptions on agents’ characteristics, the existence of a
maximin rational expectations equilibrium (maximin REE) in this general economic model is established.
To prove our existence result, instead of applying the approaches used in [1,2,26], we modify and extend

2 For some recent applications of the MEU approach to the best choice problem, see [10].
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Aumann’s approach in [8] for a deterministic economic model to our economic model. One of the key
ingredients in this approach is the concept of aggregate preferred correspondence.

This paper is organized as follows. In Section 2, mathematical preliminaries and key facts used in this
paper are presented. The economic model and assumptions are introduced and explained in Section 3. In
Section 4, we modify and extend Aumann’s concept of agents’ aggregate preferred correspondence to our
model. We establish some results on continuity and measurability of the aggregate preferred correspondence.
The main results in this section are new and different from those of Aumann in [8] for deterministic economic
model, since our model is a differential information economy and we also drop Aumann’s assumption on
the existence of an assignment that commodity-wise saturates each agent’s desire. Moreover, these results
are also key techniques for us to prove the existence of a maximin rational expectations equilibrium of
the economic model in Section 5. Finally, in Section 6, results and techniques appeared in this paper are
compared with relevant results in the literature.

2. Mathematical preliminaries

Let G be a non-empty set. On �-dimensional Euclidean space R�, two different but equivalent norms
‖ · ‖∞ and ‖ · ‖1 are used in this paper, where

‖x‖∞ = max
{
|xi|: 1 � i � �

}
and ‖x‖1 =

∑
1�i��

|xi|

for each point x = (x1, x2, . . . , x�) ∈ R�. A correspondence F : G ⇒ R� from G to R� assigns to each x ∈ G

a subset F (x) of R�. Meanwhile, F can also be viewed as a function F : G → 2R� , where 2R� denotes the
power set of R�. Further, F is called non-empty valued (resp. closed-valued, compact-valued, convex-valued)
if F (x) is a non-empty (resp. closed, compact, convex) subset of R� for all x ∈ G. The graph of F , denoted
by GrF , is defined by

GrF =
{
(x, y) ∈ G× R�: y ∈ F (x) and x ∈ G

}
.

For x ∈ R� and A ∈ 2R� \ {∅}, define dist(x,A) = inf{d(x, y): y ∈ A}, where d is the Euclidean metric
on R�. Let K0(R�) be the family of non-empty compact subsets of R�. Recall that the Hausdorff metric H

on K0(R�) is defined such that for any two A,B ∈ K0(R�),

H(A,B) = max
{

sup
a∈A

dist(a,B), sup
b∈B

dist(b, A)
}
.

For equivalent definitions of H, refer to [6]. The Hausdorff metric topology TH on K0(R�) is the topology
generated by H. For a closed subset M of R�, K0(M) and the Hausdorff metric H on K0(M) can be defined
similarly. If G is a topological space, a non-empty compact-valued correspondence F : G ⇒ R� is called
Hausdorff continuous if F : G → (K0(R�),TH) is continuous. This statement still holds when R� is replaced
with a closed subset M of R�.

Let {An: n � 1} be a sequence of non-empty subsets of R�. A point x ∈ R� is called a limit point of
{An: n � 1} if there exist N � 1 and xn ∈ An for each n � N such that {xn: n � N} converges to x. The
set of limit points of {An: n � 1} is denoted by LiAn. Similarly, a point x ∈ R� is called a cluster point of
{An: n � 1} if there exist positive integers n1 < n2 < · · · and for each k an xk ∈ Ank

such that {xk: k � 1}
converges to x. The set of cluster points of {An: n � 1} is denoted by LsAn. It is clear that LiAn ⊆ LsAn,
and both LsAn and LiAn are closed (possibly empty) sets. If LsAn ⊆ LiAn, then LiAn = LsAn = A is
called the limit of the sequence {An: n � 1}. Note that LsAn = LsAn and LiAn = LiAn. Hence, if A is
the limit of {An: n � 1}, then A is also the limit of {An: n � 1}. If A and all An’s are closed and contained
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in a compact subset M ⊆ R�, then it is well known that LiAn = LsAn = A if and only if {An: n � 1}
converges to A in the Hausdorff metric topology on K0(M).

Let (T,Σ, μ) be a measure space and {Fn: n � 1}, F : (T,Σ, μ) ⇒ R� be correspondences. Recall that
F is said to be lower measurable if

F−1(V ) =
{
t ∈ T : F (t) ∩ V �= ∅

}
∈ Σ

for every open subset V of R�. A selection of F is a single-valued function f : (T,Σ, μ) → R� such that
f(t) ∈ F (t) for all t ∈ T . If a selection f of F is measurable (resp. integrable), then it is called a measurable
(resp. an integrable) selection. Let SF denote the set of integrable selections of F . It is well known that a
non-empty closed-valued correspondence F : (T,Σ, μ) ⇒ R� is lower measurable if and only if there exists a
sequence of measurable selections {fn: n � 1} of F such that for all t ∈ T , F (t) = {fn(t): n � 1}. If all F ′

ns

are non-empty closed-valued, lower measurable and at least one of F ′
ns is compact-valued, then

⋂
n�1 Fn is

lower measurable, refer to [19]. If all F ′
ns are integrably bounded by the same function, then

Ls
∫
T

Fn dμ ⊆
∫
T

LsFn dμ and
∫
T

LiFn dμ ⊆ Li
∫
T

Fn dμ.

If (S,S , ν) is another measure space and f : (T,Σ, μ)× (S,S , ν) → R� is jointly measurable, then it is well
known that

∫
T
f(·,·) dμ : (S,S , ν) → R� is measurable. Let M ⊆ R� be endowed with the relative Euclidean

topology, and (Y, �) be a metric space. A function f : (T,Σ, μ)×M → (Y, �) is called Carathéodory if f(·, x)
is measurable for all x ∈ M , and f(t, ·) is continuous for all t ∈ T . It is known that any Carathéodory
function is jointly measurable with respect to the Borel structure on M . The integration of F over T in the
sense of [7] is a subset of R�, defined as

∫
T

F dμ =
{∫

T

f dμ: f ∈ SF

}
.

If F is non-empty closed-valued and integrably bounded, then
∫
T
F dμ is compact, refer to [18, p. 73].

The following special case of the Kuratowski–Ryll–Nardzewski measurable selection theorem will be used
in this paper. For more general versions of the measurable selection theorem, see [23] or [19].

Theorem 2.1. If F : (T,Σ, μ) → R� is a lower measurable correspondence with nonempty closed-valued
values, then it has a measurable selection.

3. Differential information economies

In this paper, a model of a pure exchange economy E with differential information is considered. The
space of states of nature is a complete probability measure space (Ω,F , ν). The space of agents is a measure
space (T,Σ, μ) with 0 < μ(T ) < +∞. The commodity space is the �-dimensional Euclidean space R�, and
the positive cone R�

+ is the consumption set for each agent t ∈ T in every state of nature ω ∈ Ω. Each agent
t ∈ T is associated with her/his characteristics (Ft, U(t, ·,·), a(t, ·),Qt), where Ft is the sub-σ-algebra of
F generated by a partition Πt of Ω representing the private information3 of t, U(t, ·,·) : Ω × R�

+ → R is a
state-dependent utility function of t and a(t, ·) : Ω → R�

+ is the state-dependent initial endowment of t and
Qt is a probability measure on Ω giving the prior belief of t. The economy extends over two time periods
τ = 1, 2. At the ex ante stage (τ = 0), only the above description of the economy is a common knowledge.

3 For a recent general study of information sets, refer to Hervés-Beloso and Monteiro [17].
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At the interim stage τ = 1, agent t only knows that the realized state of nature belongs to the event Ft(ω∗),
where Ft(ω∗) is the unique member of Πt containing the true state of nature ω∗ at τ = 2. At the ex post
stage (τ = 2), agents execute the trades according to the contract agreed at period τ = 1, and consumption
takes place. The coordinate-wise order on R� is denoted by � and the symbol x 
 0 means that x is an
interior point of R�

+, and x > 0 means that x � 0 but x �= 0. Let L1(μ,R�
+) be the set of equivalent classes

of Lebesgue integrable functions from T to R�
+. An allocation in E is a function f : T × Ω → R�

+ such
that f(·, ω) ∈ L1(μ,R�

+) for all ω ∈ Ω. An allocation f in E is feasible if
∫
T
f(·, ω) dμ =

∫
T
a(·, ω) dμ for

all ω ∈ Ω.
The following standard assumptions on agents’ characteristics shall be used:

(A1) The initial endowment function a : (T,Σ, μ) × (Ω,F , ν) → R�
+ is jointly measurable such that∫

T
a(·, ω) dμ 
 0 for each ω ∈ Ω.

(A2) U(·,·, x) : (T,Σ, μ) × (Ω,F , ν) → R is jointly measurable for all x ∈ R�
+ and U(t, ω, ·) : R�

+ → R is
continuous for all (t, ω) ∈ T ×Ω.

(A3) For each (t, ω) ∈ T × Ω, U(t, ω, ·) : R�
+ → R is monotone in the sense that if x, y ∈ R�

+ with y > 0,
then U(t, ω, x + y) > U(t, ω, x).

(A4) For each (t, ω) ∈ T ×Ω, U(t, ω, ·) : R�
+ → R is concave.

Remark 3.1. To prove our main result in Section 5, we need a classical existence result of Hildenbrand in [18],
which requires the concavity of utilities. Note that since μ(T ) < +∞, we can decompose T into a disjoint
union of two parts, namely, the atomless part T0 and another part T1 consisting of at most countably many
atoms. In fact, in order to guarantee that the existence result of Hildenbrand in [18] holds, for each ω ∈ Ω,
we only need the concavity of utility U(t, ω, ·) for t ∈ T1. But, for the sake of simplicity, for each ω ∈ Ω, we
assume the concavity of utility U(t, ω, ·) for all t ∈ T .

Let Δ be the simplex of price systems in the deterministic case normalized so that their sum is 1, i.e.,

Δ =
{
p ∈ R�

+: p 
 0 and
�∑

h=1

ph = 1
}
.

Furthermore, we shall equip Δ with the relative Euclidean topology and the Borel structure B(Δ) generated
by this topology. The budget correspondence B : T ×Ω × Δ ⇒ R�

+ is defined by

B(t, ω, p) =
{
x ∈ R�

+: 〈p, x〉 �
〈
p, a(t, ω)

〉}
for all (t, ω, p) ∈ T×Ω×Δ. Obviously, B is non-empty and closed-valued. For each ω ∈ Ω, under (A1)–(A4),
by Theorem 2 in [18, p. 151], there are p(ω) ∈ Δ and an allocation f(·, ω) such that (f(·, ω), p(ω)) is a
Walrasian equilibrium of the deterministic economy E (ω), given by

E (ω) =
(
(T,Σ, μ);R�

+;
(
U(t, ω, ·), a(t, ω)

)
: t ∈ T

)
.

Define a function δ : Δ → R+ by δ(p) = min{ph: 1 � h � �}, where p = (p1, . . . , p�) ∈ Δ. For any
(t, ω, p) ∈ T ×Ω × Δ, let

γ(t, ω, p) = 1
δ(p)

�∑
h=1

ah(t, ω),

and

b(t, ω, p) =
(
γ(t, ω, p), . . . , γ(t, ω, p)

)
.
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Define the correspondence X : T ×Ω × Δ ⇒ R�
+ by letting

X(t, ω, p) =
{
x ∈ R�

+: x � b(t, ω, p)
}

for all (t, ω, p) ∈ T ×Ω ×Δ. Note that X is non-empty, compact- and convex-valued such that B(t, ω, p) ⊆
X(t, ω, p) for all (t, ω, p) ∈ T ×Ω × Δ. It can be verified that for every (t, ω) ∈ T ×Ω, the correspondence
X(t, ω, ·) : Δ ⇒ R�

+ is Hausdorff continuous. Define correspondences C, CX : T ×Ω × Δ ⇒ R�
+ by

C(t, ω, p) =
{
y ∈ R�

+: U(t, ω, y) � U(t, ω, x) for all x ∈ B(t, ω, p)
}

and

CX(t, ω, p) = C(t, ω, p) ∩X(t, ω, p).

By (A3), we can derive that b(t, ω, p) ∈ C(t, ω, p) and thus b(t, ω, p) ∈ CX(t, ω, p) for all (t, ω, p) ∈ T×Ω×Δ.
Furthermore, it can be easily checked that

B(t, ω, p) ∩ C(t, ω, p) = B(t, ω, p) ∩ CX(t, ω, p)

holds for all (t, ω, p) ∈ T ×Ω×Δ. Note that under (A2), U(t, ω, ·) is continuous on the non-empty compact
set B(t, ω, p). Thus, one has

B(t, ω, p) ∩ C(t, ω, p) �= ∅

for all (t, ω, p) ∈ T ×Ω × Δ.

Remark 3.2. Under (A3), for any (t, ω, p) ∈ T × Ω × Δ and any x ∈ CX(t, ω, p), 〈p, a(t, ω)〉 � 〈p, x〉.
Indeed, if 〈p, x0〉 < 〈p, a(t, ω)〉 for some x0 ∈ CX(t, ω, p), then we can choose y ∈ R�

+ such that y > 0 and
〈p, x0+y〉 < 〈p, a(t, ω)〉. Thus, x0+y ∈ B(t, ω, p). Since x0 ∈ CX(t, ω, p), one has U(t, ω, x0) � U(t, ω, x0+y).
However, (A3) implies U(t, ω, x0 + y) > U(t, ω, x0), which is a contradiction.

Following [8], we call CX(t, ω, p) the preferred set of agent t at the price p and state of nature ω, and
call

∫
T
CX(·, ω, p) dμ the aggregate preferred set at the price p and state of nature ω. Moreover, we call

∫
T

CX(·, · ,·) dμ : Ω × Δ ⇒ R�
+

the aggregate preferred correspondence.

Remark 3.3. Note that our notations are slightly different from those of Aumann in [8]. In fact, the preferred
set and the aggregate preferred set defined in [8] are equivalent to our sets C(t, ω, p) and

∫
T
C(·, ω, p) dμ,

respectively. But, the preferred set CX(t, ω, p) and the aggregate preferred set
∫
T
CX(·, ω, p) dμ defined in

this paper are similar to the sets Dp(t) and
∫
T
Dp(·) dμ in [8], respectively. In [8], to define Dp(t), Aumann

used the following additional assumption:

(A5) There is an allocation4 v such that each agent t’s desire is commodity-wise saturated at v(t).

4 Note that an allocation is called an assignment in [8].
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In this paper, to avoid this assumption, we replace Dp(t) and
∫
T
Dp(·) dμ in [8] with CX(t, ω, p) and∫

T
CX(·, ω, p) dμ, respectively.

4. Properties of the aggregate preferred correspondence

In this section, we discuss some descriptive properties of the aggregate preferred correspondence. These
properties will be used to derive the existence of a maximin rational expectations equilibrium in our economic
model.

Proposition 4.1. Under (A1), for every (ω, p) ∈ Ω × Δ, B(·, ω, p) : (T,Σ, μ) ⇒ R�
+ and X(·, ω, p) :

(T,Σ, μ) ⇒ R�
+ are lower measurable.

Proof. Here, only the proof of lower measurability of B(·, ω, p) is provided. The other case can be done
analogously. Fix (ω, p) ∈ Ω × Δ. Define a function h : (T,Σ, μ) × R�

+ → R by letting h(t, x) = 〈p, x〉 −
〈p, a(t, ω)〉 for all (t, x) ∈ T × R�

+. Then, h(·, x) is measurable for all x ∈ R�
+. Note that B(t, ω, p) =

h(t, ·)−1((−∞, 0]). Let V ⊆ R�
+ be a non-empty open subset of R�

+, and put V ∩ Q�
+ = {xk: k � 1}. It is

worth to point out that if x ∈ B(t, ω, p)∩V , then xk ∈ B(t, ω, p) for some k � 1. Since h(·, xk) is measurable,
{t ∈ T : h(t, xk) ∈ (−∞, 0]} ∈ Σ for all k � 1. Thus,

B(·, ω, p)−1(V ) =
⋃
k�1

{
t ∈ T : xk ∈ B(t, ω, p)

}

=
⋃
k�1

{
t ∈ T : h(t, xk) ∈ (−∞, 0]

}

belongs to Σ. It follows that B(·, ω, p) is lower measurable. �
Proposition 4.2. Under (A1)–(A3),

∫
T
CX(·, · ,·) dμ : Ω × Δ ⇒ R�

+ is non-empty compact-valued.

Proof. Fix (ω, p) ∈ Ω×Δ. By (A2), CX(t, ω, p) is non-empty closed for all t ∈ T . By the lower measurability
of B(·, ω, p), there exists a sequence {fn: n � 1} of measurable functions from (T,Σ, μ) to R�

+ such that
B(t, ω, p) = {fn(t): n � 1} for all t ∈ T . For each n � 1, define a correspondence Cn : T ⇒ R�

+ by letting

Cn(t) =
{
x ∈ R�

+: U(t, ω, x) � U
(
t, ω, fn(t)

)}
for all t ∈ T . Obviously, one has C(t, ω, p) ⊆

⋂
n�1 Cn(t) for all t ∈ T . If x ∈ R�

+ \C(t, ω, p) for some t ∈ T ,
there exists a point y ∈ B(t, ω, p) such that U(t, ω, y) > U(t, ω, x). By (A2), there exists an n0 � 1 such that
U(t, ω, fn0(t)) > U(t, ω, x). This implies that x /∈ Cn0(t), and thus C(t, ω, p) =

⋂
n�1 Cn(t) for all t ∈ T .

Fix n � 1, and define h : (T,Σ, μ) × R�
+ → R by

h(t, x) = U
(
t, ω, fn(t)

)
− U(t, ω, x).

Clearly, h is Carathéodory. Similar to Proposition 4.1, one can show that Cn is lower measurable. Since
X(·, ω, p) is compact-valued and

CX(·, ω, p) =
⋂
n�1

Cn(·) ∩X(·, ω, p),

then CX(·, ω, p) : (T,Σ, μ) ⇒ R�
+ is lower measurable. By Theorem 2.1, CX(·, ω, p) has a measurable

selection which is also integrable, as b(·, ω, p) is so. Since CX(·, ω, p) is closed-valued and integrably bounded,∫
CX(·, ω, p) dμ is compact. �
T
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In [8], the continuity of
∫
T
Dp(t) in p was proved. As shown in the next theorem, with the help

of Proposition 4.2, we are able to establish the continuity of our aggregate preferred correspondence∫
T
CX(· , · , ·) dμ in p ∈ Δ with respect to the Hausdorff topology on K0(R�

+).

Theorem 4.3. Under (A1)–(A3), for each ω ∈ Ω,
∫
T
CX(·, ω, ·) dμ : Δ ⇒ R�

+ is Hausdorff continuous.

Proof. Fix ω ∈ Ω. Let {pn: n � 1} ⊆ Δ converge to p ∈ Δ. Then

c = inf
({

δ(pn): n � 1
}
∪
{
δ(p)

})
> 0.

For each (t, ω) ∈ T ×Ω, let

d(t, ω) = 1
c

�∑
h=1

ah(t, ω),

and

ξ(t, ω) =
(
d(t, ω), . . . , d(t, ω)

)
.

Define M(ω) by

M(ω) =
{
x ∈ R�

+: x �
∫
T

ξ(·, ω) dμ
}
.

Since X(·, ω, pn) and X(·, ω, p) are bounded from above by ξ(·, ω), then the sets
∫
T
CX(·, ω, pn) dμ and∫

T
CX(·, ω, p) dμ are contained in the compact subset M(ω) of R�

+. Thus, one only needs to show that
{
∫
T
CX(·, ω, pn) dμ: n � 1} converges to

∫
T
CX(·, ω, p) dμ in the Hausdorff metric topology on K0(M(ω)),

which is equivalent to

Li
∫
T

CX(·, ω, pn) dμ = Ls
∫
T

CX(·, ω, pn) dμ =
∫
T

CX(·, ω, p) dμ.

The above equation can be verified in two steps. First, one verifies

Ls
∫
T

CX(·, ω, pn) dμ ⊆
∫
T

CX(·, ω, p) dμ.

To do this, it is enough to verify that LsCX(t, ω, pn) ⊆ CX(t, ω, p) for any t ∈ T . Pick t ∈ T and x ∈
LsCX(t, ω, pn). Then, there exist positive integers n1 < n2 < n3 < · · · and for each k a point xk ∈
CX(t, ω, pnk

) such that {xk: k � 1} converges to x. It is obvious that x ∈ X(t, ω, p). If x /∈ CX(t, ω, p), by the
continuity of U(t, ω, ·), one can choose some y ∈ R�

+ such that 〈p, y〉 < 〈p, a(t, ω)〉 and U(t, ω, y) > U(t, ω, x).
By the Hausdorff continuity of X(t, ω, ·), {X(t, ω, pnk

): k � 1} converges to X(t, ω, p) in the Hausdorff metric
topology. Since y ∈ X(t, ω, p), there exists a sequence {yk: k � 1} such that yk ∈ X(t, ω, pnk

) for all k � 1
and {yk: k � 1} converges to y. It follows that U(t, ω, yk) > U(t, ω, xk) and 〈pnk

, yk〉 < 〈pnk
, a(t, ω)〉 for all

sufficiently large k, which is a contradiction with xk ∈ CX(t, ω, pnk
) for all k � 1. Therefore, one must have

x ∈ CX(t, ω, p). Secondly, one needs to verify
∫

CX(·, ω, p) dμ ⊆ Li
∫

CX(·, ω, pn) dμ.

T T
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It suffices to verify that CX(t, ω, p) ⊆ LiCX(t, ω, pn) for all t ∈ T . Fix t ∈ T and d ∈ CX(t, ω, p). If
d = b(t, ω, p), then b(t, ω, pn) ∈ CX(t, ω, pn) and {b(t, ω, pn): n � 1} converges to d. Assume d < b(t, ω, p).
Select δ > 0 such that

d + (0, . . . , δ, . . . , 0) � b(t, ω, p),

and a sequence {δi: i � 1} in (0, δ] converging to 0. For each i � 1, let

di = d + (0, . . . , δi, . . . , 0),

and choose a sequence {din: n � 1} such that for each n, din ∈ X(t, ω, pn) and {din: n � 1} converges to di.
It is claimed that for each i � 1, din ∈ CX(t, ω, pn) for sufficiently large n. Otherwise, there must exist
an i0 and a subsequence {di0nk

: k � 1} of {di0n : n � 1} such that di0nk
/∈ CX(t, ω, pnk

). Let bk ∈ B(t, ω, pnk
)

and U(t, ω, bk) > U(t, ω, di0nk
) for all k � 1. Then {bk: k � 1} has a subsequence converging to some

b ∈ B(t, ω, p). (A2) and (A3) imply

U(t, ω, b) � U
(
t, ω, di0

)
> U(t, ω, d),

which contradicts with d ∈ CX(t, ω, p). To complete the proof, note that the previous claim implies that for
each i, {dist(di, CX(t, ω, pn)): n � 1} converges to 0. Since {di: i � 1} converges to d, one concludes that
{dist(d,CX(t, ω, pn)): n � 1} converges to 0. This means that d ∈ LiCX(t, ω, pn). �

The next result is crucial for the existence theorem in Section 5. In its proof, the following characterization
of lower measurability of correspondences in [6] is used: A correspondence F : (Ω,F , ν) ⇒ R�

+ is lower
measurable if and only if for all y ∈ R�

+, dist(y, F (·)) : (Ω,F , ν) → R+ is a measurable function.

Theorem 4.4. Under (A1)–(A3), for each p ∈ Δ,
∫
T
CX(·,·, p) dμ : (Ω,F , ν) ⇒ R�

+ is lower measurable.

Proof. Fix p ∈ Δ. Since a and U are Σ ⊗ F -measurable and Σ ⊗ F ⊗ B(R�
+)-measurable respectively,

by the argument of a result in [27, p. 131], there exist two sequences {an: n � 1} and {ψn: n � 1} of
Σ⊗F -measurable and Σ⊗F ⊗B(R�

+)-measurable functions respectively such that {an: n � 1} uniformly
converges to a on T ×Ω and {ψn: n � 1} uniformly converges to U on T ×Ω ×R�

+. For each n � 1, write
an and ψn as

an =
∑
i�1

eiχTn
i ×Ωn

i
and ψn =

∑
i�1

viχTn
i ×Ωn

i ×Bn
i
,

where ei ∈ R�
+, vi ∈ R, and {Tn

i × Ωn
i × Bn

i : i � 1} is a partition of T × Ω × R�
+ for all n � 1. Choose

N � 1 such that ‖an − a‖∞ < 1 for all n � N . By the measurability of an(·, ω), an(·, ω) ∈ L1(μ,R�
+) for all

ω ∈ Ω and all n � 1 (replacing an for all 1 � n < N by some constant functions, if necessary). Let

γn(t, ω) = 1
δ(p)

�∑
h=1

ahn(t, ω),

and

bn(t, ω) =
(
γn(t, ω), . . . , γn(t, ω)

)
.

Define Xn, Bn, Cn : T ×Ω ⇒ R�
+ such that Xn(t, ω) = {x ∈ R�

+: x � bn(t, ω)},
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Bn(t, ω) =
{
x ∈ R�

+: 〈p, x〉 �
〈
p, an(t, ω)

〉}
and

Cn(t, ω) =
{
y ∈ R�

+: ψn(t, ω, y) � ψn(t, ω, x) for all x ∈ Bn(t, ω)
}
.

In addition, define CX
n : T ×Ω ⇒ R�

+ such that for all (t, ω) ∈ T ×Ω,

CX
n (t, ω) =

(
Cn(t, ω) ∪

{
bn(t, ω)

})
∩Xn(t, ω).

For every n � 1, define the correspondence Hn : (Ω,F , ν) ⇒ L1(μ,R�
+) by letting Hn(ω) = SCX

n (·,ω).
Obviously, Hn(ω) �= ∅ for all ω ∈ Ω.

Claim 1. For each n � 1, Hn is lower measurable. For convenience, let Θ : L1(μ,R�
+) × Ω → R+ be

the function such that Θ(g, ω) = dist(g,Hn(ω)) for all g ∈ L1(μ,R�
+) and ω ∈ Ω. To verify the claim,

one needs to verify that for all g ∈ L1(μ,R�
+), Θ(g, ·) is measurable. Since Θ(·, ω) : L1(μ,R�

+) → R+ is
norm-continuous, it suffices to show that Θ(g, ·) : (Ω,F , ν) → R+ is measurable for every simple function
g =

∑r
j=1 xjχTj

, where xj ∈ R�
+. To this end, consider the function Γ : (T,Σ, μ) × (Ω,F , ν) → R+ such

that Γ (t, ω) = dist(g(t), CX
n (t, ω)) for all (t, ω) ∈ T × Ω. Since Γ is constant on each (Tn

i ∩ Tj) × Ωn
i ,

it is jointly measurable. Note that Γ (t, ω) � ‖g(t) − bn(t, ω)‖ for all (t, ω) ∈ T × Ω. This implies for all
ω ∈ Ω, Γ (·, ω) is integrable. Thus, Θ(g, ·) is measurable and Claim 1 is verified if one shows for all ω ∈ Ω,∫
T
Γ (·, ω) dμ = Θ(g, ω). Assume

∫
T
Γ (·, ω0) dμ < Θ(g, ω0) for some ω0 ∈ Ω. Pick ε > 0 such that

∫
T

Γ (·, ω0) dμ + εμ(T ) < Θ(g, ω0).

Further, pick t ∈ Tn
i ∩ Tj and y(i,j) ∈ CX

n (t, ω0) so that

‖xj − y(i,j)‖ < Γ (t, ω0) + ε.

Define ζ : T → R�
+ by ζ(t) = y(i,j) for all t ∈ Tn

i ∩ Tj . Then, ζ ∈ Hn(ω0) and

‖g − ζ‖1 <

∫
T

Γ (·, ω0) dμ + εμ(T ),

which is a contradiction.
Claim 2. The correspondence

∫
T
CX

n (·,·) dμ : (Ω,F , ν) ⇒ R�
+ is lower measurable. Consider the function

ξ : L1(μ,R�
+) → R�

+ defined by ξ(f) =
∫
T
f dμ for all f ∈ L1(μ,R�

+). Let V be an open subset of R�
+. Note

that

ξ ◦Hn(ω) =
∫
T

CX
n (·, ω) dμ

for all ω ∈ Ω, and

(ξ ◦Hn)−1(V ) =
{
ω ∈ Ω: Hn(ω) ∩ ξ−1(V ) �= ∅

}
.

Since ξ is norm-continuous, by Claim 1, (ξ ◦Hn)−1(V ) ∈ F . This verifies the claim.
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Claim 3. For each ω ∈ Ω,

Li
∫
T

CX
n (·, ω) dμ = Ls

∫
T

CX
n (·, ω) dμ =

∫
T

CX(·, ω, p) dμ.

To see this, for each ω ∈ Ω, put

α(·, ω) = sup
{
b1(·, ω), . . . , bN−1(·, ω), b(·, ω, p) +

(
�

δ(p) , . . . ,
�

δ(p)

)}
.

Then, CX(·, ω, p) and all CX
n (·, ω) are bounded from above by α(·, ω). Now, it suffices to verify that for

all t ∈ T ,

LsCX
n (t, ω) ⊆ CX(t, ω, p) and CX(t, ω, p) ⊆ LiCX

n (t, ω).

First, let x ∈ LsCX
n (t, ω). If x = b(t, ω, p), then {bn(t, ω): n � 1} converges to x and bn(t, ω) ∈ CX

n (t, ω) for
all n � 1. Otherwise, there exist positive integers n1 < n2 < n3 < · · · and for each k a point xk ∈ CX

nk
(t, ω)

such that {xk: k � 1} converges to x. Obviously, xk �= bnk
(t, ω) for all sufficiently large k, and x ∈ X(t, ω, p).

If x /∈ CX(t, ω, p), there exists some y ∈ B(t, ω, p) such that U(t, ω, y) > U(t, ω, x). By the continuity of
U(t, ω, ·), y can be chosen so that 〈p, y〉 < 〈p, a(t, ω)〉. Since {Xnk

(t, ω): k � 1} converges to X(t, ω, p) in
the Hausdorff metric topology, there exists a sequence {yk: k � 1} such that yk ∈ Xnk

(t, ω) for all k � 1
and {yk: k � 1} converges to y. By the inequality

∣∣U(t, ω, x) − ψnk
(t, ω, xk)

∣∣ < ∣∣U(t, ω, x) − U(t, ω, xk)
∣∣ +

∣∣U(t, ω, xk) − ψnk
(t, ω, xk)

∣∣,
the continuity of U(t, ω, ·) and the uniform convergence of ψnk

(t, ω, ·) to U(t, ω, ·), one concludes that

ψnk
(t, ω, yk) > ψnk

(t, ω, xk) and 〈p, yk〉 <
〈
p, ank

(t, ω)
〉

for sufficiently large k, which contradicts with the fact that xk ∈ CX
nk

(t, ω) for all k � 1. Hence, x ∈
CX(t, ω, p). Now, let d ∈ CX(t, ω, p). If d = b(t, ω, p), there is nothing to verify. Thus, d ∈ LiCX

n (t, ω).
Assume d < b(t, ω, p). Similar to that in the proof of Theorem 4.3, one can show that d ∈ LiCX

n (t, ω).
To complete the proof, for each ω ∈ Ω, put

M(ω) =
{
x ∈ R�

+: x �
∫
T

α(·, ω) dμ
}
.

Clearly,
∫
T
CX

n (·, ω) dμ and
∫
T
CX(·, ω, p) dμ are contained in the compact set M(ω). By Claim 3,

{
∫
T
CX

n (·, ω) dμ: n � 1} converges to
∫
T
CX(·, ω, p) dμ in M(ω) in the Hausdorff metric topology. It is

well known that a nonempty compact-valued correspondence is lower measurable if and only if it is mea-
surable when viewed as a single-valued function whose range space is the space of nonempty compact sets
endowed with the Hausdorff metric topology. By Claim 2,

∫
T
CX(·,·, p) dμ is lower measurable. �

Corollary 4.5. Under (A1)–(A3),
∫
T
CX(·, · ,·) dμ : (Ω,F , ν)×(Δ,B(Δ)) → K0(R�

+) is a jointly measurable
function, where K0(R�

+) is endowed with the Hausdorff metric topology.

Proof. By Theorem 4.3, for every ω ∈ Ω,
∫
T
CX(·, ω, ·) dμ : Δ → K0(R�

+) is continuous. Furthermore,
by Theorem 4.4, for every p ∈ Δ, the correspondence

∫
T
CX(·,·, p) dμ : (Ω,Σ, ν) ⇒ R�

+ is lower mea-
surable. Hence, for every p ∈ Δ,

∫
T
CX(·,·, p) dμ : (Ω,Σ, ν) → K0(R�

+) is measurable. This means that∫
T
CX(·, · ,·) dμ : (Ω,F , ν)×(Δ,B(Δ)) → K0(R�

+) is Carathéodory, and therefore is jointly measurable. �
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5. Maximin rational expectations equilibrium

A price system of E is a measurable function π : (Ω,F , ν) → Δ. Let σ(π) be the smallest sub-algebra of
F such that π is measurable and let Gt = Ft ∨σ(π). For each ω ∈ Ω, let Gt(ω) denote the smallest element
of Gt containing ω. Given t ∈ T , ω ∈ Ω and a price system π, let BREE(t, ω, π) be defined by

BREE(t, ω, π) =
{
x ∈

(
R�

+
)Ω: x

(
ω′) ∈ B

(
t, ω′, π

(
ω′)) for all ω′ ∈ Gt(ω)

}
.

The maximin utility of each agent t ∈ T with respect to Gt at x : Ω → R�
+ in state ω ∈ Ω, denoted by

UREE(t, ω, x), is defined by

UREE(t, ω, x) = inf
ω′∈Gt(ω)

U
(
t, ω′, x

(
ω′)).

Comparing with UREE(t, ·,·), the function U(t, ·,·) is sometimes called the ex post utility of agent t.

Remark 5.1. The maximin utility formation in the sense of REE was introduced by de Castro et al. in [13],
where Ω is finite. In this case, for each t ∈ T , Πt is a partition of Ω consisting of only finitely many elements
and σ(π) is generated by a partition Ππ also consisting of only finitely many elements. Thus, the σ-algebra
Gt = Ft ∨ σ(π) is generated by the partition Πt ∨Ππ. For each ω ∈ Ω, there exists a unique element Gt(ω)
in Πt ∨Ππ containing ω. It is clear that Gt(ω) is the smallest element of Gt containing ω. Moreover, since
Gt(ω) is a finite set, UREE(t, ω, x) is well-defined.

In our case, Ω is fairly general, particularly, can be infinite. The structure of σ(π) can be complicated. If
Ω is infinite, σ(π) may not be generated by a partition. But, for each ω ∈ Ω, there always exists a (unique)
smallest element in σ(π) containing ω. This means that there also exists a (unique) smallest element Gt(ω)
in Gt containing ω. Since Gt(ω) can be infinite, UREE(t, ω, x) is allowed to take the value −∞ if the above
infimum does not exist. This adaptation will not affect the proof of Theorem 5.5 below.

Definition 5.2. (See [13].) Given a feasible allocation f and a price system π, the pair (f, π) is called a
maximin rational expectations equilibrium (abbreviated as maximin REE) of E if f(t, ω) ∈ B(t, ω, π(ω))
and f(t, ·) maximizes UREE(t, ω, ·) on BREE(t, ω, π) for all (t, ω) ∈ T × Ω. In this case, f is called a
maximin rational expectations allocation, and the set of such allocations is denoted by MREE(E ).

Let x : Ω → R�
+ be Gt-measurable. Recall that the Bayesian expected utility of agent t with respect to

Gt at x is given by EQt [U(t, ·, x)|Gt]. When Ω is finite, Gt is generated by the partition Πt ∨Ππ. Then,

EQt
[
U(t, ·, x)|Gt

]
(ω) =

∑
ω′∈Πt∨Ππ(ω)

U
(
t, ω′, x

(
ω′))× π(ω′)

π(Πt ∨Ππ(ω)) ,

where Πt ∨Ππ(ω) is the unique member of Πt ∨Ππ containing ω.

Definition 5.3. (See [1,26].) Given a feasible allocation f and a price system π, the pair (f, π) is called a
Bayesian rational expectations equilibrium (abbreviated as Bayesian REE) of E if

(i) for each t ∈ T , f(t, ·) is Gt-measurable;
(ii) for all (t, ω) ∈ T ×Ω, 〈f(t, ω), π(ω)〉 � 〈a(t, ω), π(ω)〉;
(iii) for all (t, ω) ∈ T ×Ω,

EQt
[
U
(
t, ·, f(t, ω)

)
|Gt

]
(ω) = max

REE REE
EQt

[
U(t, ·, x)|Gt

]
(ω),
x∈B (t,ω,π(ω))∩Lt
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where LREE
t is defined by

LREE
t =

{
x ∈

(
R�

+
)Ω : x is Gt-measurable

}
.

Remark 5.4. Definition 5.2 indicates that at a maximin rational expectations allocation, each individual
maximizes his maximin utility conditioned on his private information and the information generated by the
equilibrium prices, subject to the budget constraint. Definition 5.3 indicates that at a Bayesian rational ex-
pectations allocation, each individual maximizes his Bayesian utility conditioned on his private information
and the information generated by the equilibrium prices, subject to the budget constraint. The resulting
equilibrium allocations are measurable with respect to the private information of each individual and also
with respect to the information the equilibrium prices generate. For detailed discussions on relations and
comparison between Bayesian REE and Maximin REE, refer to [13].

It is well known that a Bayesian rational expectations equilibrium may not exist. It only exists in a
generic sense and not universally. Moreover, it fails to be fully Pareto optimal and incentive compatible and
it is not implementable as a perfect Bayesian equilibrium of an extensive form game, see [15]. In [13], de
Castro et al. showed that MREE(E ) �= ∅ when Ω and T are finite. Our next theorem extends their result
to a more general case.

Theorem 5.5. Under (A1)–(A4), MREE(E ) �= ∅.

Proof. Consider the correspondence Z : (Ω,F , ν) × (Δ,B(Δ)) ⇒ R� defined by

Z(ω, p) =
∫
T

CX(·, ω, p) dμ−
∫
T

a(·, ω) dμ.

By Proposition 4.2, Z is non-empty compact-valued. In addition, by Theorem 4.3, Z is also Hausdorff
continuous in p. By Corollary 4.5 and (A1), Z : (Ω,F , ν) × (Δ,B(Δ)) → K0(R�) is jointly measurable.
Define another correspondence F : (Ω,F , ν) ⇒ (Δ,B(Δ)) by

F (ω) =
{
p ∈ Δ: Z(ω, p) ∩ {0} �= ∅

}
.

Note that E (ω) has a Walrasian equilibrium for each ω ∈ Ω. This implies that F is non-empty valued.
Furthermore, by Hausdorff continuity of Z(ω, ·), F is also closed-valued. Since GrF = Z−1({0}), then GrF ∈
F ⊗ B(Δ). By Theorem 8.1.4 in [6],5 F is lower measurable. By Theorem 2.1, there exists a measurable
selection π̂ of F . By the definition of Z, there exists an allocation f such that f(t, ω) ∈ CX(t, ω, π̂(ω)) and∫
T
f(·, ω) dμ =

∫
T
a(·, ω) dμ for all (t, ω) ∈ T ×Ω. Remark 3.2 implies that 〈π̂(ω), f(t, ω)〉 � 〈π̂(ω), a(t, ω)〉

for all (t, ω) ∈ T × Ω. It follows that 〈π̂(ω), f(t, ω)〉 = 〈π̂(ω), a(t, ω)〉 for μ-a.e. t ∈ T and all ω ∈ Ω. Thus,
f(t, ω) ∈ B(t, ω, π̂(ω)) for μ-a.e. t ∈ T and all ω ∈ Ω. For every ω ∈ Ω, define Tω ⊆ T by

Tω =
{
t ∈ T : f(t, ω) ∈ B

(
t, ω, π̂(ω)

)
∩ C

(
t, ω, π̂(ω)

)}
.

Then, μ(Tω) = μ(T ) for all ω ∈ Ω. Next, for every ω ∈ Ω and every t ∈ T \ Tω, as B(t, ω, π̂(ω)) ∩
C(t, ω, π̂(ω)) �= ∅, one can pick a point

h(t, ω) ∈ B
(
t, ω, π̂(ω)

)
∩ C

(
t, ω, π̂(ω)

)
,

5 This is the only place in this paper where the completeness of (Ω,F , ν) is required.
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and then define a function f̂ : T ×Ω → R�
+ such that

f̂(t, ω) =
{

f(t, ω), if t ∈ Tω;
h(t, ω), if t ∈ T \ Tω.

It is obvious that f̂(t, ω) ∈ B(t, ω, π̂(ω)) ∩ C(t, ω, π̂(ω)) for all (t, ω) ∈ T × Ω. Assume that there are an
agent t0 ∈ T , a state of nature ωt0 ∈ Ω and an element y(t0, ·) ∈ BREE(t0, ωt0 , π̂) such that

UREE(t0, ωt0 , y(t0, ·)
)
> UREE(t0, ωt0 , f̂(t0, ·)

)
.

Then, one obtains

U
(
t0, ω

′
t0 , y

(
t0, ω

′
t0

))
> U

(
t0, ω

′
t0 , f̂

(
t0, ω

′
t0

))
for some ω′

t0 ∈ Gt0(ωt0), which contradicts with f̂(t0, ω′
t0) ∈ C(t0, ω′

t0 , π̂(ω′
t0)). This verifies that (f̂ , π̂) is a

maximin rational expectations equilibrium of E . �
Remark 5.6. In this remark, we explain how our maximin utility is related to that of Gilboa and Schmeidler
in [14], and whether Theorem 5.5 can be extended to the framework of Gilboa and Schmeidler. For any
S ∈ F , let FS = {F ∩ S: F ∈ F}. The set of beliefs of agent t at state ω is defined by

Δ
(
Gt(ω)

)
=

{
ν : FGt(ω) → [0, 1]: ν is finitely additive and ν

(
Gt(ω)

)
= 1

}
.

First, we claim that for any F -measurable function x : Gt(ω) → R�
+,

inf
ω′∈Gt(ω)

U
(
t, ω′, x

(
ω′)) = inf

ν∈Δ(Gt(ω))

∫
Gt(ω)

U
(
t, ·, x(·)

)
dν.

For convenience, we put

a = inf
ω′∈Gt(ω)

U
(
t, ω′, x

(
ω′)) and b = inf

ν∈Δ(Gt(ω))

∫
Gt(ω)

U
(
t, ·, x(·)

)
dν.

Since a � U(t, ω′, x(ω′)) for all ω′ ∈ Gt(ω), for any ν ∈ Δ(Gt(ω)), we have a �
∫

Gt(ω) U(t, ·, x(·)) dν. This fur-
ther implies a � b. If a < b, then we choose some c with a < c < b. Define A = {ω′ ∈ Gt(ω): U(t, ω′, x(ω′)) ∈
(a, c)}. From the definition of a, the set A is non-empty. By (A2), A ∈ FGt(ω). Choose ν0 ∈ Δ(FGt(ω))
such that ν0(A) = 1 and ν0(Gt(ω) \ A) = 0. Thus,

∫
Gt(ω) U(t, ·, x(·)) dν0 < b. This is a contradiction, which

verifies the claim. Therefore, in our model, the maximin utility can be re-formulated as

UREE(t, ω, x) = inf
ν∈Δ(Gt(ω))

∫
Gt(ω)

U
(
t, ·, x(·)

)
dν

under the F -measurability assumption of x. Once we realize this, then we can see how Theorem 5.5 can be
further extended to the framework of either maxmin expected utility in [14] or variational representation of
preferences in [24] under the same assumption. Indeed, if we define

UREE(t, ω, x) = inf
ν∈K

∫
U
(
t, ·, x(·)

)
dν,
Gt(ω)
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as the maximin utility function, where K is any non-empty, closed and convex subset of Δ(Gt(ω)) as in
Gilboa and Schmeidler [14], then Theorem 5.5 still holds. To see this, we only need to verify the last part
of the proof of the theorem. Suppose there are an agent t0 ∈ T , a state of nature ωt0 ∈ Ω and an element
y(t0, ·) ∈ BREE(t0, ωt0 , π̂) such that

UREE(t0, ωt0 , y(t0, ·)
)
> UREE(t0, ωt0 , f̂(t0, ·)

)
.

Then, we can find a ν0 ∈ K such that
∫

Gt0 (ωt0 )

U
(
t0, ·, y(t0, ·)

)
dν0 >

∫
Gt0 (ωt0 )

U
(
t0, ·, f̂(t0, ·)

)
dν0.

So, there exists a B ∈ FGt0 (ωt0 ) with ν0(B) > 0 such that

U
(
t0, ω

′
t0 , y

(
t0, ω

′
t0

))
> U

(
t0, ω

′
t0 , f̂

(
t0, ω

′
t0

))
for all ω′

t0 ∈ B, which contradicts with f̂(t0, ω′
t0) ∈ C(t0, ω′

t0 , π̂(ω′
t0)). The other case can be verified similarly.

6. Conclusion

The first application of maximin expected utilities to the general equilibrium theory with differential
information appeared in [11], where an existence theorem for a Walrasian equilibrium in an economy was
established. However, their MEU formulation is in the ex ante sense, and REE notion was not considered.

It is well known that Walrasian expectations equilibrium may not exist in a differential information
economy with Bayesian expected utilities and infinitely many states, see Podczeck et al. [25]. With infinitely
many states, Herves-Beloso et al. [16] showed equilibrium existence assuming that the finitely many agents
observe a public and a private signal. The publicly observed signal may take infinitely many values but
private signals only take finitely many values. That is, the asymmetries among agents’ information affect
only a finite number of states. The major difference between the model in [16] and ours is that our allocations
are not privately measurable, comparing with that in the case of Walrasian expectations equilibrium. Hence,
we restrict our attention only on the ex-post utility (that is, we are in a finite dimensional commodity
space framework) in Section 4. Later, we use the results obtained in Section 4 to prove the existence
theorem in Section 5. Note that the equilibrium prices are F -measurable and thus, we need the results in
Section 4 to establish the existence theorem. But, in the case of Walrasian expectations equilibrium, we
deal with privately measurable allocations and if there are infinitely many states, then we are in an infinite
dimensional commodity space framework. Thus, our analysis cannot be used to extend the existence of
Walrasian expectations equilibrium in [16] to a differential information economy with Bayesian expected
utilities and infinitely many states of nature.

Comparing with the existence result on maximin REE in [13], our theorem applies to a more general
economic model with an arbitrary finite measure space of agents and an arbitrary complete probability
measure space as the space of states of nature, while the later applies only to an economic model which has
finitely many agents and finitely many states of nature. The assumptions in our paper are similar to those
in [13], except the joint measurability and continuity of utility functions, and the joint measurability of the
initial endowment function. The proof techniques in this paper are quite different from those in [13]. Since
there are only finitely many agents and states of nature in the model considered in [13], neither measurability
nor continuity of utility functions and the initial endowment function plays any role in the proof of the
existence of a maximin REE. Instead, the existence of a competitive equilibrium for complete information
economies is applied. In contrast, both measurability and continuity of utility functions and the initial
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endowment function play key roles in this paper. To establish the existence theorem, techniques in [8] are
adopted, measurability and continuity of the aggregate preferred correspondence are investigated. However,
for special cases, the techniques can be simplified. For instance, if there are finitely many states of nature,
one can still apply the approach employed in [13] and obtains an existence theorem. On the other hand, if
there are finitely many agents, then one can show that the demand of each agent is F ⊗B(Δ)-measurable
and so is the aggregate demand. Then, an approach similar to that in the proof of Theorem 5.5 can be
applied to establish the existence theorem. Further, since the space of states of nature in our model is an
abstract probability space, our existence theorem does not depend on the dimension of the space of states
of nature.

In [9], Bhowmik and Cao used appropriate notions of properness to characterize Warasian expectations
allocations in infinite dimensional commodity spaces. It would be interesting to known if those notions of
properness can also be used to provide similar characterizations of maximin REE allocations in infinite
dimensional commodity spaces. Recently, a general model of trade ex ante with differential information and
uncertain delivery, in which there are finitely many agents and finitely many states of nature, was studied
by Correia-da-Silva and Hervés-Beloso in [12], and the existence of equilibrium is established. It would also
be interesting to see whether the techniques in this paper can be used to extend the existence of equilibrium
in [12] to the framework of infinitely many agents and infinitely many states of nature.
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